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Abstract

Cross stream modes are defined as solutions to the Orr-Sommerfeld equa-

tion which arc propagating normal to the flow direction. These modes are

utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-

Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads

to a standard eigenvalue problem for the frequencies of Poiseuille flow insta-

bility waves. The coefficient matrix in the eigenvalue problem is shown to

be the sum of a real matrix and a negative-imaginary diagonal matrix which

represents thc frcquencies of the cross strcam modes. The real coefficient

matrix is shown to approach a Tocplitz matrix when the row and column

indices are large. The Toeplitz matrix is diagonally dominant, and the di-

agonal elements vary inversely in magnitude with diagonal position. The

Poiseuille flow eigenvalues are shown to lie within Ger_gorin disks with radii

bounded by the product of the average flow speed and the axial wavenumber.

It is shown that the eigenvalues approach the Ger_gorin disk centers when

thc mode index is large, so that the method may be used to compute spectra

with an essentially unlimited number of clements. When the mode index is

large, the real part of the eigenvalue is the product of the axial wavenumber

and the average flow speed, and the imaginary part of the eigenvalue is iden-

tical to the corresponding cross stream mode frequency. The cross stream

method is numerically well-conditioned in comparison to Chebyshev based

methods, providing equivalent accuracy for small mode indices and superior

accuracy for large indices.
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1 Introduction

The Orr-Sommerfeld equation represents the small perturbations of other-

wise parallel incompressible flow. As such, it has received a great deal of

study. Most of these results are summarized in the excellent texts by Chan-

drasekhar [1] and by Drazin and Reid [2]. The primary objective of most

investigations has been to define stability boundaries. These boundaries can

be defined either by study of the growth and decay of modes in time or by

study of their growth and decay in space. In either approach, it has been

found advantageous to cast the problem in the form of a linear eigenvalue

problem. Chandrasekhar [1], Dolph and Lewis [3], and Grosch and Salwen [4]

used transcendental basis functions from fourth order operators to estimate

eigenvalues of the Orr-Sommerfeld equation. Orzag [5] utilized Chebyshev

polynomials in a study of the temporal eigenvalue problem, while Bridges and

Morris [6] applied these polynomials in a study of the spatial formulation.

The movement toward Chcbyshev polynomials was motivated by their at-

tractive mathcmatical properties and by the disappointing results obtained

from earlier approaches. Dolph and Lewis [3] had computed temporal eigen-

values using a set of basis functions derived from the Orr-Sommerfeld equa-

tion itself. Their rationale was that these functions would provide a natural

basis for the problem at hand and could thus be expected to provide good

approximations to the general Orr-Sommerfeld equation. The basis utilized

by Dolph and Lewis was thc countable set of solutions to the Orr-Sommerfeld

equation for modes propagating perpendicular to the steady flow direction.

For these modes, the Orr-Sommerfeld equation becomes a fourth-order or-

dinary differential equation with constant coefficients and thus has exact

solutions given by the elementary transcendental functions.

But it is clear that Dolph and Lewis [3] were not entirely satisfied with

their results. This may have been, in part, because they were still struggling

with the numerics of the eigenvalue solution process, which is almost taken

for granted today. The purpose of this paper is to re-examine the application

of the basis functions of Dolph and Lewis [3] to the problem of determining

the temporal stability characteristics of the Orr-Sommerfeld equation. Plane

Poiseuille flow will be used for this study.

The characteristic solutions of the Orr-Sommerfeld equation are defined



by the system

L4¢---- wL2¢

¢(-4-1) ---- 0

¢_(:kl) = 0

where L4 is a fourth order operator and L2 is a second order operator. Let

{¢o,¢1,...} be a basis for a Hilbert space with inner product < u,v >. A

solution is defined by the expansion

oo

¢=
n----0

whid_ gives the matrix eigcnvalue problem

<¢,_, LaCn) an = w <¢,,_, L21bn) an

whose solutions give eigenvalues w_ and associated eigenvectors a,,. This

paper compares two methods of solving the above eigenvalue problem for the

case of Poiseuille flow. The first method utilizes the Chebyshev basis with

the Lanczos tau criterion, and the second utilizes the cross-stream basis of

Dolph and Lewis [3] with the Galerkin criterion.

Section 2 restates the Orr-Sommerfeld equation to define fully the opera-

tors and other notation. The Chebyshev/Tau method is applied to Poiseuille

flow in section 3 and it is demonstrated that this method suffers from poor

numerical conditioning. Section 4 develops the cross stream basis in detail

and gives the procedures for evaluation the basis functions to machine pre-

cision. The cross stream formulation of the eigenvalue problem is given for

general flows in section 5 and applied to the case of Poiseuille flow in section

6. The summary and conclusions are given in section 7.
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2 The Orr-Sommerfeld Equation

The stability of incompressible flow in a channel is defined by characteristic

solutions of the Orr-Sommerfeld equation. This paper presents an analysis

of that equation emphasizing the special case of Poiseuile flow where the

density and viscosity are constant. Figure 1 shows the flow in a channel. We

use the same coordinates as in Drazin and Reid [2] since this is the most

comprehensive and current work on the subject. In this system, x is the

flow direction, y is horizontal and perpendicular to the flow, and z is vertical

and perpendicular to the flow. The origin of coordinates is placed midway

between the plates so that the lower and upper walls are located at z = +h.

Z

¥

Figure 1: Poiseuille flow in a channel.

Poiseuille flow is formed by }laving an axial pressure gradient to induce

the flow. The x-momentum equation for the steady flow gives

dp cgrxz cg(OU)= Ozz = Ozz #-0-z-z = constant (1)

where/z is the viscosity. Sincc the shear stress gradient 7"z is constant, the

stress varics linearly across the dlannel. The steady flow is then a parabola
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and the maximum velocity is in the center of the channel.

U(z) = u,_ 1- -_ (2)

The Orr-Sommerfeld equation for velocity perturbations in the vertical di-

rection (Drazin and Reid, [2, p. 156]) for a general velocity profile U(z)
is

w. ,., zlcrw + k_w) - V_ w = 0 (3)(u, - _)(w" - k_w)+ _ - _-_ " "

where v = #/p is the kinematic viscosity.

The symbols in equation 3 are explained below in figure 2. The figure

z y:
{'V ,,/.

X

Figure 2: Coordinates and wavcnumber conventions.

shows the wave vector geometry, which is taken according to a standard

spherical coordinate convention.

= ksin0

k, = kcos0

(4)



kx= krcos¢
/% = k.,.sin¢

Here/_ is the magnitude of the radial (horizontal) wave vector, which makes

an angle _b with respect to the downstream flow velocity, that is

¢ = arctan _- (5)

The polar angle 0 is defined by tile components kr and kz.

= arctan k--7 (6)

Here we have departed from Drazin and Reid is using kx and/% in place of

their wavenumber symbols a and ft. We also depart from their convention in

showing the explicit dependence of thc variables on the propagation angle ¢.

The component of U in the direction of the radial wave vector is Ur = U cos ¢.

The vertical component of the perturbation velocity is assumed to be a
wave of the form

weik. {_o,_ x+.i. _ _-_0 (7)

If we define a radial position vector

e = a'.x + _y (8)

then the fluctuating vertical velocity can be given in compact form

wd (_'*-_'_) (9)

Here, c,. is tile complex radial propagation speed of the wave. The frequency
of the wave is therefore

= krc, = _ cosec = k.c (10)

where c - c., is the complex downstream speed used by Drazin and Reid.

We use nondimensional variables based on the maximum velocity U,,,_, and

the channel half-width h. The non-dimensional frequency is then wh/U,,_,_,



the non-dimensional wavc number is krh, and the nondimensional kinematic

viscosity is v/(U,.,_h), which is the same as the inverse Reynolds number

R -l. The form of equation 3 remains the same, but we rewrite it as

ivL4w + k,.cos¢ (UL_w- U"w)

where the operators are defined as follows

= wL_w (11)

(12)

(13)

For Poiseuille flow, the nondimensional flow velocity function and its second

derivative would bc

U = (1 - z 2) (14)

u" = -2 (15)



3 Chebyshev/Tau Spectral Method

Orzag utilized a basis of Chebyshev polynomials with the Lanczos tau cri-

terion to obtain accurate spectral solutions to the Orr-Sommerfeld equation

for plane Poiseuille flow. This method is reviewed quickly here and Orzag's

results are replicated as a basis for comparison to the cross-stream spectral
method.

3.1 Review of the Chebyshev/Tau Method

The Chebyshev method utilizes a series representation of w(z) in terms of

the Chebyshev polynomials of the first kind.

OO

w(z) = _ a.T.(z) (16)
n=0

It was shown by Orzag that the derivatives of w(z) can be given by series of

the same form as equation 16, provided that the coefficients in the series for

the derivatives are defined in terms of the coefficients of the velocity function

w. That is, the second derivative is given by the series

oO

w"(z)= ac.2 T.(z)
n=0

(17)

where the coefficients in the series for the second derivative are defined in

terms of the coefficients in the series for the function, i.e.

OO

a_ ) = __l _ n(n 2 - m2)a_, m _> 0 (18)
C'm _=m+2

n=m (rood 2)

where

0, if m < 0;
am= 2, if m=0;

1, if m> 0.

Similar formulas for the fourth derivative are

(19)

OO

=
n=0

(20)
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a_) - 1 _ P(m,,_)a., m > 0 (21)
24c_ .=,,,+4

n=m (rood g)

Pim,_) = . [_(_ - 4)_- 3m_(. _- _) - _i_ _- 4)_] (22)

These formulas are easily coded, but contain the origin of a significant prob-

lem of numerical conditioning. When placed in a matrix format by truncating

the series to a finite number of terms, say a polynomial of degree M + 1, the

largest element in the matrix representing the fourth derivative operator is of

order M 7. The derivative operator matrices are upper triangular, with zeros

on the diagonal, and the matrix equivalent of the operator L 4 will have di-

agonal elements k_, so that the smallest non-zero elements (on the diagonal)

are of order unity, while the largest (in the upper right comer) are of order
M _'"

In the case of Poiseuille flow, the only other relation needed is the ex-

pression for the function z2w(z). The formula for this term is found from

known recurrence formulas for Chebyshev polynomials. As given by Orzag,
the relation is

1

Z2W(Z) = -_ _ [C_-2an-2 4- (an "4- Crt_l) an + an+2] (23)

n--o

The matrix equivalent of this series is a tri-diagonal matrix operator with

simple fractional elements such 1/2 and 1/4. This matrix is designated here

by the symbol [Z2].

Using the symbols [L 2] and [L 4] to designate the second and fourth order

operators, respectively, the matrix equivalent of the Orr-Sommerfeld equa-
tion for Poiseuille flow is

In the Lanczos tau method, the rows of the above matrix equation rep-

resenting the highest-degree polynomials are replaced with the constraints

representing the boundary conditions on w and w'. In this way, the bound-

ary conditions are satisfied exactly by the solutions to the matrix eigenvalue

problem.

Equation 24 has the form of a generalized eigenvalue problem, that is

Ax = _Bx (25)
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Conversion of this equation to a standard eigenvalue problem would require

a matrix inverse. While this is generally possible for matrices of reasonable

size, the choice is usually to use direct methods, such as the QZ algorithm, for

a direct solution of the gencralized eigenvalue problem. The results presented

below are from the IMSL [8] library routine GVCCG for the complex gen-

eralized eigenvalue problem. Measures of the accuracy of the computations

were generated by the IMSL routine CPICG.

3.2 Results of the Chebyshev/Tau Method

Computations were made using the Chebyshev basis to find eigenvalues of

the first 32 even modes, that is, whcre n = {0, 2,... 62}. Results are shown

in figure 3 for two computational word sizes, the 32-bit word and the 64-

bit word. Points shown in the figure have been rotated through 90* in the

complex plane by plotting iw instead of w. The first quadrant then con-

tains eigenvalues of stablc modes. The word size clearly has a strong effect

e ° ':-'__::

g

oe

• ¢4,

_.. _.

_o

Figure 3: Computed eigenvalucs iw from the Chebyshev/Tau method, k_ =
1.0, ¢ = 0.0, Re = 104, and 32nd order matrix. Gray symbols show results

of 32-bit words, and black show results of 64-bit words.

on the results of the computation. The eigenvalues predicted by the 32-bit

computation bear little or no relation to those predicted by the 64-bit com-

putation, so that the less accurate computations must be incorrect. Accurate



computations with the Chebyshev basis require a large computer word. This

is because the Chebyshev formulation is numerically ill-conditioned, that is,

the condition numbers of the matrices in the generalized eigenvalue prob-

lem are large. The IMSL subroutine CPICG issued warnings that the 32-bit

computations shown in figure 3 would be inaccurate.

There is another proble m apparent in figure 3. One normally expects 32

eigenvalues from a 32nd order matrix, and a careful count of the points in

figure 3 shows only 25 black symbols and 23 gray. Unless there are repeti-

tions, the others must be off-scale, but where? The answer is that they are

scattered hither and yon in the complex plane, far from the origin, and in

all four quadrants. The black symbol just to the left of the imaginary axis,

near the point 9;[iw] = 2.2, is normally called the"critical" eigenvalue, or

fastest growing mode, but an examination of all the eigenvalues produced

by this computation would indicate modes which grow much faster. Similar

results are found also for the subcritical Reynolds numbers Re < 5772. It

would appear that researchers who report results of "critical eigenvalue" and

"critical Reynolds number" computations from the Chebyshev/Tau method

are exercising judgements about the spectra in their conclusions. While

these opinions are no-doubt carefully considered and responsible, the need

for such judgements presents a danger which becomes more significant when

computations are made for problems which have been explored to a lesser

extent. It is highly desirable to have a spectral method which is relatively

insensitive to computer-word size and which produces spectra such that the

least-attenuated mode can be defined absolutely by the maximum imaginary

part of the eigenvalue. This paper will show that the cross-mode method

achieves these computational goals.
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4 Cross-Stream Modes

Dolph and Lewis [3] used solutions of the Orr-Sommerfeld equation with

d_ - =l=_r/2 as a basis for a spectral approximation. In this case, cos ¢ = 0,
and the Orr-Sommerfeld reduces to

ivL4w = coL2w (26)

The physical interpretation of these solutions is that the wave vector ]_r is

pointing across the flow direction, so that these solutions will be called cross-
stream modes here.

4.1 Even Modes

An even solution is

a [ cosh kcz]w(z) = coskzz- cosk,  hsh J (2z)

where k is the spherical wavenumber and a is a constant to be defined later.

This solution clearly satisfies the boundary conditions w(+l) = 0.' The

boundary conditions w'(+l) = 0 are then satisfied if

0 > kz tan kz = -/_ tanh kr > -oo, 0 < k_ < oo (28)

The function k_ tan k, in equation 28 is even and, when k, is small, ap-

proaches k _. Since k¢ tanh k, is even also, it approaches k_ when k_ is small.

But there is no "small-k," solution to equation 28 because kz tan k, is posi-

tive while -k, tanh k_ is negative. The first solution k,0 > 0 is thus found in

the interval (_r/2 < kz0 < re). Since k, tan k, is monotonically increasing in

this interval, there is one and only one solution within the interval. Since the

solutions k,,, to equation 28 are real positive numbers, the following change

of variable is introduced to facilitate their computation.

(29)
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Then equation 28 becomes

tan6,` = fl,,(kr)=krtanhk,, n = 0,2,4,... (31)
r_ - 6,'

This equation has a unique solution 0 <: 6,,(kr) < _r/2 for each selected

even index n. Thus, equation 28 has a countable set of solutions which

may be labled by the set of non-negative cven integers. When k_ is large, 6,_

approaches r/2, and the solutions k=,_ approach (n+l)lr/2 from above. When

k, is small, 6,_(kr) approaches 0, and the solutions k=_ approach (n + 2)_r/2
from below.

Asymptotic formulas for the solutions 6,`(k_) of equation 31 can be found

by writing it as an arctangent function of the parameter r_.

] -,6(e,) = arctan 1 - en6(en)J' en = t_,_
(32)

A Taylor series in the parameter e,` then gives the desired formula.

- - 3Z_)Z_ (33)_,,_+(3 _,`)_ (30 20&+ 2 3
_,_ 3_ a + 15_ +-'., n ---* oo

Although it is valid in concept only for large n, when r_ >> kr, this formula

is valid to four digits even in the case n = 0, k, = 1.0, _ = _r. It thus

provides a good initial cstimate for a numerical solution of equation 32 for

moderate values of kr.

Numerical solutions for the wavenumbers are based on equation 32, writ-

ten as a function of a variable 0 _< _ = 2&,/_r < 1 together with its first
derivative.

f.(() = ( - - arctan (34)
+ 2)-

f_(_) = 1- 2 7- (35)
+ 2) - +

where

% -- (36)
_r

Figure 4 shows thesc functions for n = 0,I,2,c_. The functions are nearly

straightlines,so that the zero-crossingpoints _0(n) are easilyfound numer-

ically.The slopesof the curves are positive and nearly unity, so that the

12



errors in the functions are roughly the same as the error in the solution.

The solutions are found by starting with the estimate of the asymptotic for-

mula 33 and then iterating with Newtons method using equations 34, 35

until a desired accuracy is reached. Using a 64-bit computer word, which

is equivalent to about 15 digits accuracy, the numerical solutions have been

computed with an error no greater than 10 -14 .

0.25

/n(¢) o.o

-0.25

oo 2 1 n--0

I i I l

0 0.25 0.5 0.75

Figure 4: Graphical solution for vertical wavenumbers, 7- = 1.

4.2 Odd Modes

An odd solution to equation 26 is

o_ [ sinh kcz]w(z) = _ sinkzz-sinkz s-_-nh--_ J (37)

The characteristic equation is again given by the boundary conditions on u/

1 1

l>_tankz=_tanhk_>0, 0<k¢<c¢ (38)

Equation 38 also has a countable set of solutions. Since (tan kz)/(kz) >_ 1

in the interval (-r/2,_r/2) and since (tanh k,.)/k.,. < 1 in the interval 0 <

k¢ < oo, there is no solution within thc central interval (-7r/2 < k_ < Ir/2).

13



However,there is a singlesolution within eachinterval ((n + 1)zr/2 < kz,, <

(n + 2)r/2, n = 1,3,5....Therefore, equation 38 has a countable set of

solutions which may be labeled by the positive odd integers. When k¢ is

large, these solutions approach (n + 1)1r/2 from above (but now n is odd),

and, when k¢ is small, they approach a limit from below, but the limit is

less than (n + 2)7r/2. Using the same offset variable definition as in the case

of even modes, but with odd indices n, equation 38 is written in arctangent
form.

]6(e, )=arctan  (kr)=/ cothk¢, n=1,3,5,... (39)

This equation is identical to the one for the even mode wavenumbers, except

for the definition of B,,, so that the asymptotic formula 33 and the function

for numerical solution, equation 34 arc applicable to the odd modes as well

as the even.

C_

,--4

-2 • • • • •*••••,••••*°eoe•o•o•oeeouoeo•ooOoOo•oOo•

i s u n | n | #

0 8 16 24 32 40 48 56 64

Figure 5: Wavcnumber offsets for 64 modes, kr = 1.

Figure 5 shows the wavenumber offsets 6,_ as computed by the asymp-

totic formula. The points are plotted as logl0 6,, versus n. There are two

patterns-- the "upper" points are the odd indices, and the "lower" are the

even. This is because the function fl,,(k¢) is always larger for the odd indices.

These offset variables become small quickly as the mode index increases.

Consequently, the small-angle approximations for sin 6,, and cos 6,_ will be

14



accurate for all but possibly the "lowest" modes. Figure 6 showsthe accu-
racy of the asymptotic formula for the offsets,compared to the numerical
solution of the offsetequationby Newton'smethod. The asymptotic formula

0

!

O
¢-I

bO

-16
0

oe

°°eo

°°eeeeeeee°eeee°eeeoeeeeeeoOeOeeo|oeeeoeoeoeeeeeoOeOeOee

• i i i i J i J

8 16 24 32 40 48 56 64

n

Figure 6: Accuracy of asymptotic formula for wavenumber offsets for 64

modes, k, = 1.

has an absolute error less ttian 10 -12 for mode indices greater than about 48.

The formula is more accurate for the even indices than for the odd, but is an

excellent approximation in either case.

4.3 Combined Modes

4.3.1 Definitions and identities

The combined set of all real-valued solutions to equation 28 and to equa-
tion 38 is thus a countablc set of distinct wavenumbers which increase mono-

tonically with the index n.

_r 37r

{_ < _z0< _ < kz, < y < k.2 < 2_ <...} (40)

Associated with these wavenumbers are characteristic solutions, called cross-

modes here. It will be helpful to utilize the following identities in the defini-
tion of these modes.

cosk_,, = -(-1) [''/21 cos6,_, m even (41)

15



sin k,,_ = - (- 1)["/2] cos 6,,, m odd (42)

The cross-modes are then defined as linear combinations of two "mode parts"

¢,(z) and ¢,(z).

a,_ [¢,_(z)+(_l)[,_/2]cos6,¢n(z) ] n=0,1,2... (43)w.(z)-

cos k,.z, n even (44)¢.(z) = sin k..z, n odd

I cosik,.z/cosik,., n even (45)
¢.(z) = [. sin ik,.z/sin ik_, n odd.

The function ¢,(z) is usually expressed in terms of real hyperbolic functions,

but it will be convenient later to use the complex forms shown in equations 45.

Note that the division operation In/2] in equation 43 is an integer operation

with an integer result.

It is easy to show that

= 0 (46)
L2¢.(z) = -k_¢,_(z) (47)

L2wn(z) = -ank_¢,,(z) (48)

These results will be useful later in the development of spectral approxima-

tions to Orr-Sommerfeld equation.

4.3.2 Inner products, norms, and orthogonality

An inner product is defined as an integral over the interval [-1,1].

l f_ 1(f,g) = _ f(z)g(z)dz (49)

The natural norm of a function is the square root of the inner product of the
function with itself.

[Ifll = (f, f)'/2 (50)

The constants a. can be defined using the above definitions and the or-

thonormal condition of Dolph and Lewis [3]

1 f_ [k_wm(z)w.(z)+ w_(z)w_(z)] dz = df,,,,_ (51)2 1

16



Integrating equation 51by parts andusingthe definition 49 gives the identity

(win,-L2w.) = tS,_n (52)

The cross-stream modes w.(z) are not orthogonal; however, they are "partly

orthogonal", meaning that their two parts, as given by equation 41, are

orthogonal. More precisely, the orthogonality properties of the two parts are

{¢m,¢.)= o, allm,n (53)

Since the functions ¢ are either even or odd, depending on the parity of the

index, there is also the condition

(¢m,¢.)=0, m+n odd (54)

It can also be shown, using the characteristic equations for k_,_, that the

functions ¢,_ are orthogonal.

(¢_,¢.)= _.(¢.,¢.) (55)

Combining this result with equation 52 defines the constants a,_ through the

following equation.

o_,,= (¢,,,¢.)-,/2= I1¢.11-' (56)
The inner product (¢n, ¢.) is given by

1

(¢., ¢.)= _(1 + (-1)" sinc2k_.)

whcre tile "sinc" function is defined as

(57)

sin x
sincx = _ (58)

X

Similarly, the inner product of the function ¢,, with itself is

(¢,,,¢,.)= 1 + (- 1)" sinch 2k,.

1 + (-1)" cosh2k¢
(59)

with
sinh x

sinch x -- (60)
27
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Using the expressionfor the vertical wavcnumbersgives

i(1 sin2_n_

and the norm of the function ¢,, is

(61)

( sin26.'_1/2I1¢.11= T 1 _ ] (62)

Since 8,, _ 0 for large n, it is clear that the above inner product approaches

1/2. The final formula for the constants is then

sin 2_% _ -1/24. = v5 1 _-kZ / (63)

Note that a. = O(v_) for all values of _ and n. The norm I1¢.11is a positive

real number, roughly v/2/2 for any kr, including the limits where kr ---* 0 and

k_ ---, c_. The norm of the function ¢,, is

I1¢.11= _ \ eosh 2k¢ + 1 ]

_/2

+ ifn is even, (64)
' - ifnisodd.

The norm I1¢_11approaches a positive limit, 1 for even modes and v_/3 for

odd, as k_ approaches zero and approaches zero in the limit of large k¢. The

cross-mode functions are defined finally using the norm of the functions ¢..

Cn + (- 1) ["/2] cos &¢n

w. = /_ I1¢.11 (65)

The norm of the cross-mode w. is

IIw.II= (11¢"11_+ c°s=_11¢_112)1/2
I1¢.11 (66)

These results show that the cross-modes, as defined here, approach 0 uni-

formly in z when either k¢ or n becomes large, because the magnitude of

the spherical wavenumber k. becomes large. The derivatives of the cross-

modes are finite, however, for these cases. The Dolph-Lewis normalization

18



condition, equation 51 can be given in terms of the norms IIw.II and II_ll
1t8

IIw_ll2+ k_llw.ll2= 1 (67)

This is the equation for an ellipse with IIw.II plotted as the abscissa and

Ilu/nll plotted as the ordinate. The "semi-major" axis is k_"!. , and the

"semi-minor" axis is 1. Of course, if kr > 1 the major axis becomes the

ordinate instead of the abscissa. But this equation makes clear the following

bounds on the norms of w,, and w_.

IIw.II < k;" (68)
IIw'll < 1 (69)

There is also the following explicit equation for the norm of the derivative in

terms of the norms of the mode parts.

iiw.ii 2= k_.ll¢,,ll_- k_cos_6.11_.112 (70)

The ratio kz,/k,, approaches unity for large kz,,, consequently, for fixed

and large index n, the norms have the following asymptotic limits.

IIw.II _ o, n _ oo (71)
IIw'll _ 1, n-4 oo (72)

Figures 7 and 8 illustrate the cross-modes and the norm properties de-

scribed above. Figure 7 is the lowest mode, n = 0. Only the domain

[0 < z _< 1] is shown because the mode is even. The solid curve is the

mode function w,,(z) and the dashed curvc is its derivative wJ,(z). Note that

both curves approach zero at the boundary as required by the boundary con-

ditions. The norms of the function and its derivative are similar in magnitude

for this mode.

Figure 8 shows the eighth cross-mode. It is clear that the mode has

smaller norm than its derivative norm in this case. The derivative of the

mode is roughly a sine function. The norm of the derivative, which is the

rms value taken over the channel width, is near unity for this mode.

The cross-modes are non-orthogonal, or non-normal. A measure of rel-

ative normality of different modes is the "angle" 7,_,, between two different
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Figure 7: Cross mode wo(z) and its derivative w_(z), k,. = 1.
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Figure 8: Cross mode ws(z) and its derivative w_(z), k.,. = 1.
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modes. This angle can be defined as

(Win 3_13n)

cos.r,,,. = Ilw.,,ll"IIw,,ll (7'3)

The angle between any mode and itself is zero, because this formula gives

cos%n,n = 1. The angle between modes of opposite parity is lr/2, because

the inner product (w + m, w,,) is zero. The remaining case to consider is the

angle between two modes of the same parity, where m + n is an even number.

In this case, the angle is

(_ ])t.,,m+[./2]cos6mcos_. I1¢,,,11.I1¢,,11
m_

cos_m. (ll¢.,l12+cos_,%,llCml12),/_(ll¢.l12+cos2,%ll¢.,l12),/_ (74)

The sine of the angle 7,,-, is conveniently defined by a two-equation formula
as follows.

= cos6 ,,era,,)lJl (75)
I1¢.,,11

1 + a,. + a,_ _ 1/2-+---:+----_ 2 (7'6)sin 7,_,_ = 1 + a m + an + a,na n ]

In a typical case, the norms are of the same order of magnitude, and sin 7,,,,_ _

v_/2. The angle between the modes would be roughly 60 °. In the case

where k, = 1, the angles between all even modes is about 57 °, and the angles
between all odd modes is about 68 ° .

The frequencies w,_ associated with the cross-stream modes are

= +kL)= -i.k. (7'7)

Note that the frequencies are inversely proportional to the Reynolds number

and are separated by roughly -iu(2n + 3)7r2/4. When the Reynolds number

is large, there will be a considerable number of frequencies on the negative

imaginary axis whose magnitude is small, but these frequencies are always

distinct, that is, they form a discrete set. Waves corresponding to these

frequencies decay slowly in time, but are absolutely stable. Note that, since

k_0 > Ir/2, the "closest" frequency w0 is "below" -iu(k_ + lr_/4) on the

imaginary axis.

21



5 Cross-Stream Spectral Method

5.1 Standard Eigenvalue Equation

The solutions of the cross stream propagation case may be useful in a spectral

approximation for the general case. Since each solution satisfies the boundary

conditions, a representation of w(z) by an infinite sum of these terms will

also satisfy the boundary conditions. We therefore seek an spectral solution

to the Orr-Sommerfeld equation by using the Galerkin criterion. Thus, let

0o

w(z)= _ a._,,(_)lk. = Lw,.(z)lk,,J {a. } (TS)
n----0

where it is clear that the row matrix has dimensions (1, c_) and the column

has dimensions (c_, 1). If the sequence an is bounded for large n, then the

series converges as kj 2 because the norm of w. is proportional to k_ -1. This

spectral solution in the Orr-Sommerfeld equation gives an equation

i_,LL4w,_lk. J { a,_ } + kz L (U L 2 - U')wr, lk.. J { an } -- w LL2w_,lk. J { _. }

(79)
This equation can be simplified somewhat by using the equation for the cross

stream modes, a special case of equation 79 which is satisfied identically for

eadl term in the series.

iv [ L4w,,/k_ J { an } = [ w.L2w./k. J { a. } (80)

Subtracting equation 80 from equation 79 gives the simplified approximation

k..[(UL2-U")w,,/k,,J{a,,}=[(w-w,,)L2wn/k..J{a.} (81)

Any error in this solution must be orthogonal to the elements w_(z) of the

set of cross-stream basis functions. This gives the linear eigenvalue problem

kx[k,,_lw,_,(-UL2+U')w,_/k,_)]{a,_}+[w,_]{a,_}=w{a.} (82)

Equation 82 can be stated concisely as

[kx[D] + [w,_]] { a,, } = w { a. } (83)
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where it is understoodthat [w,,] is a diagonalmatrix and the matrix [D] is
given by

[D]--[k,_,(w,,,,(-UL 2 + U")w,_)/k_] (84)

The above equations arc given in terms of infinite matrices, and the compu-

tations must be restricted to finite matrices. It is assumed here, and will be

demonstrated later, that a convergence occurs as the matrix size increases.

But no proof of convergence will be attemped. Further discussion of the

convergence of spectral approximations may be found in the book by F.

Chatelin [7].

The matrix [D] is a function of k, only. Once this is constructed, the

dependence of the eigenvalues on cos ¢ can be observed by repeated solu-

tions with different values of that parameter. The matrix [D] is real, but

not symmetric. It is clear that the eigenvalues of equation 83, viewed as a

function of ¢, will be stationary at the downstream direction ¢ = 0. This

is consistent with Squire's theorem, which says that the imaginary parts of

the eigenvalues take on extremal values at that point. The effect of Reynolds

number is contained within the cross-mode frequencies wn. These frequencies

are negative imaginary numbers which are inversely proportional to Reynolds

number and directly proportional to the square of the spherical wave number.

5.2 Evaluation of the array Dmn

The elements of tile matrix will be designated by Din,,, with m indicating

the row number and n indicating the column. Using the identity 46 gives

D,,,,_ = km(U,w,_¢,,)o_,, + k,_(U",wmw,_)/k_ (85)

The classic cases of Couette and Poiseuille flow are included within the case

where U(z) is a polynomial of degree p > 2.

p

u(z) = (86)
j=O

p-2

u"(z) = F_, " Jujz (87)
j=O

= (j + 21(j+ 11 j+2 (88)
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Equation 85 isrewritten for the polynomial velocityprofilewith inner prod-

ucts of powers of z and products of the mode functions.

p p-2

_-" u"kD,_n= __,ujk,_(z#,w,_¢,_)an+ z...,# '_(z#,w-w'_)/I_
j=O j--O

(89)

This rewritten form shows that it is necessary only to evaluate three different

arrays. These are

Ai,n. = (z#,¢._¢.) (90)

Bi,_. = (z i, ¢m¢.) (91)

C1,,,,_ = (z i, ¢m¢.) (92)

The other array is a transpose of the second one above

(Z i, CinCh)---- Bjnrn = B Tjmn

Now, the array D,_. is given by the long expression

(93)

+

P

(Aj . + (- cos6.,Bi,.,.)
jffi0

p-2

+ k-2 i=o

p-2

c_,not,_k_E uj# ((-1)[m/']cos6mBjmn + (--1)['q2]COS6,_BTmn)
1=0

DErI, FI,

5.2.1 Evaluation of arrays A#,._

The elements of the array Aim. are given by thc formula

(95)Ai._. = (z i, ¢m¢.)

The trigonometric identities for products of trigonometric functions are used

to convert the products to functions of the sums and differences of the re-

spective arguments. The specific identities to be used are as follows.

(96)1 cos(kz,. + k,,_)z1 cos(k_._ - kz,_)z +cos k,,,,z cos k,,,z = -_
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sin k..,z cos k_z 1 sin(k.,,, + k_)z (97)= 2 sin(k.,_ - k..)z +

1 sin(k.,.,, - k.,,)z + 1- 2 _ sin(k.., + k,.)z (98)

1 cos(k.,,, + k..)z (99)= ½cos(k,_ - k_.)z-

Utilizing these identities gives the following formulas for the elements AS,,,..
If m and n are both even, then

1 j 1 j
A_,_,, = _(z , cos(k.m - k..)z) + -_(z , cos(k.., + k..)z) (100)

If m is odd and n is even, then

1 . . 1 j
Aj_. = _(z', sm(k.,_ - k..)z) + -_(z, sin(k._ + k..)z)

If m is even and n is odd, then

(101)

1 . 1 j
A._,n,_ = -_(z_, sin(k_,.- k..)z) + _(z , sin(k_,. + k..)z)

Finally, if m and n are both odd, then

(102)

1 ._ 1 •
Ajmn = -_(z ,cos(kzm - kzn)Z) -- _(Z_,COS(kzm -4- kzn)Z) (103)

5.2.2 Evaluation of arrays Bjm.

When integrals involving ¢ occur, ikr would be used in place of k_,_ or k._.

This permits the development of explicit formulas for the elements B_,,,.

which are very similar to the ones for the matrix elements As,,,.. If m and n
are both even, then

_(z', cos(k.,,+ ikr)z)
B_. = cosh k,.

(104)

If m is odd and n is even, then

_{zJ, sin(k.. + ikc)z)

Bj,,.n = sinh k,.
(105)
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If m is even and n is odd, then

Bj,nn = _(zJ'sin(kzn + ik,.)z) (106)
cosh k,.

Finally, if m and n are both odd, then

-_t(zJ,cos(kz,_ + i_)z) (107)
Bj,._,_ = sinh k¢

Note that every even-numbered row of the array Bj,,,,_ is identical, as is every

odd-numbered row. Thus, the complete array Bj,_,_ is defined by (2 x N)

elements.

5.2.3 Evaluation of arrays Cjm

The formulas for the elements of the arrays Cj,,,,, are found by letting both

kz,, and kz,,, go to ik¢. If m and n are both even, then

(z j , 1) + (z j, cos2ik,.z) (108)
Cjmn = 1 + cos 2ik,.

If m is odd and n is even, then

Cj ?,ltMq'

If m is even and n is odd, then

(z_,sin 2ik,.z)

sin 2ik_
(109)

<zJ,sin 2ikcz) (110)
Cjmn = sin 2i_

Finally, if m and n are both odd, then

(z j, 1) - (zJ,cos2ikcz> (111)
Cjm,, = 1 - cos 2ik_

Only a (2 x 2) array must be evaluated to provide all elements of Cj,,,,,.
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5.2.4 Evaluation of Elementary Integrals

Let the sums and differencesof the verticalwavenumbers be designated as

om = kzm+k_. (112)

All of the inner products in the previous section are evaluated using the

following two elementary integrals.

=0, ifjiseven(z #, sin am.z) :_ 0, if j is odd (113)

(z _, cos am.Z) { _ 0, if j is even (114)=0, ifjisodd

The parameter a,_. in equation 112 can be small or large. Diagonal elements

in the array Aj._. have am. = 0. The elements in the array Cjm. have terms

where a,.. = 0 or [2ik.[, both of which are small if k. is small, [k_[ << 1.

Off-diagonal elements will generally have integrals where a,_. is large. The

integrals where [am.[ is small or zero are best evaluated using power series

for the sine and cosine functions. The following formulas presume that j is

even or odd, depending on whether the integral has a non-zero value.

c¢ 1 Ptr2P'{" 1(-) vm.
(z'#'sinam"z) = _ (2p+ 2j + 2)(2p+ 1)!' la"] < O(1) (115)

p:=0

oo (-1),o_.
(zJ'c°sam"z) -- _ (2p+j + l)(2p)[' [a'_"l < 0(I) (116)

p--O

When [aT,.[ is a finitc number, then exact expressions for the inner products

are available.

v/21 (-172
(z j, sin a,..z) = cos a,..

am. m0 (J - 2p)[a_.

v/21 (-1?(j-1)!
.sin a,,,. _ (117)

+ 3 a_. p=o(j-l-2p)!a_-

_/21 (- 1)Pj!
(z _, cos a,..z) = sin a,_.

am. p=0 (J - 2p)!a_,_

t_/2]-I
.cOSCm. (- 1)P(j - 1)!

+ 3 a_. _ (118)___0(j- 1- 2p)!_.
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All of the finite-seriesexpressionsabove are exact, and the condition on
la,n,_] is a general recommendation for their application, but not an absolute

requirement. The finite series are limited by machine accuracy, because their

results are given as the differences of large numbers when ]a,n,I is small. The

two terms in the finite series are 0([a_,_[-2([_/2]+1)), and their difference must

be O(1). Consequently, any machine error e,,,i,_ is amplified by the magnitude

of the two terms. If the desired computation error is less than e, then [a,,,,[

is limited

< _ (119)

The finiteseriesshould then be used if

e,,,,,, ) _._ (120)Io .1 > (-7-

If we attempt to make the computation error as small as the machine error,

then la,,,,I > 1 in the finite series. Achieving machine accuracy in the infinite

series requires enough terms in the series such that the inverse of the factorial

is less than e,,,_,,, that is, p ranges from 0 to M, where M is the least integer

satisfying the condition
1

< c,n_,_ (121)
(2M + 1)]

For example, a 64-bit computer word corresponds to a machine error of about

10 -Is, and 19] _ 1.2x10 iT, so that 2M + 1 = 19, or M = 9 as an upper limit

in the infinite series with [a,,,,_[ _< 1 would be consistent with the goal of

machine accuracy for a 64-bit word.
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6 Application to Poiseuille Flow Stability

This section considers the application of the preceeding analysis to the sta-

bility of Poiseuille flow in a channel. This is the simplest case to consider

because the matrix solutions can be made separately for the even modes and

for the odd modes. The asymptotic behavior of the matrix elements for large

indices gives approximate solutions for the higher modes. This approximate

solution is given below, and then computational results will be shown for a

test case.

Poiseuille flow is symmetric with U(z) = 1 - z 2. The velocity coefficients

are then {us} = {1,0,-1}. There is a single coefficient for the curvature

of the velocity, {u__} = {-2}. The array Ao_,_ is 6,,,,,/c_, the array Bo_,, is

identically zero, and the array Co,,,,, is 5m,,C0,,,, so that the array D,,,,, is

{&- (_l)f z2! )D,,,, = a_a,, _ a_ A2,_,, - cosS,,,B2,,,,_

oe._oe. (6,.. + (_l)[.,/_]+l./2]cos6,ncos6.Co.,.)-2 k'---'_ \area,
(122)

The matrices for the Poiseuille flow may be formed using only even modes or

only odd modes, since the flow profile is symmetric. This greatly simplifies

the computations for Poiseuille flow. All indices are then either both even

or both odd, and functions like fin which depend only on the parity of the

index can conveniently be designated by a parity index p.

p - mod (m, 2) = mod (n, 2) 023)

6.1 Asymptotic approximations for finite k_

Asymptotic approximations were developed previously for the vertical wave-

numbers. Similar approximations are possible for the elements of the array

D,,,,. The approximations show the properties of the general eigenvalue

problem and will lead to an asymptotic estimate of the eigenvalues of the Orr-

Sommerfeld equation itself. The asymptotic formulas are developed following

a reversed order from the evaluation formulas in the previous section, that is,

the formulas for the elementary functions are developed first, then formulas

for elementary integrals are given, and finally, the formulas for the arrays are
enumerated.
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6.1.1 Asymptotic formulas for wavenumber variables

All formulas to bc given hcrc assumc that k¢ is finite. We use less accurate

formulas than tile ones given previously for the vertical wavenumbers because

the point of this devclopmcnt is to show general properties rather than to

develop an accurate computational procedure.

The offset variable 6,, is given by a one-term approximation

_. ~--& +..., _.>>_ (124)

The vertical wavenumbers are given by two-term approximations.

(,,)kz..-._. 1-_+... , _.>>_ (125)

The spherical wavenumbers _ depend on the radial wavenumber and the

vertical wavenumbers.

,_ +... , ,_>>_ (126)

This result gives a simple formula for the characteristic frequencies of the

cross-modes

,_ .+... , _ >>_ (12_)

The mode normalization constants are also easy to estimate with these re-

sults.
/ ,-i \

\ Ls;,/

6.1.2 Elementary integrals

The elementary integrals with small arguments can occur only when the

terms represent positions on the diagonals of the arrays and when k:_ is the

difference of thc wavcnumbcrs. But in this case, the arguments are exactly

zero. The elementary integrals are then

1

(z2,cos(kz,_ - k..)z) = -_, m = n (129)
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In the moregeneralcase,the argumentsare finite.

(z_,cosa,,_,_z) sin am,, 2 2 cos an,_--Z _L + a_. _.#0 (130)

The array Co,_n is given by

= 1 +( 1 psinh2_ (131)

6.1.3 Asymptotic formulas for arrays

The asymptotic form for the array B:mn shows that it is inversely propor-
2

tional to _,,.

B2_.~ _(-1)[("+2)/_)1+.. (132)

The general form of the array D,n. can be completed with as estimate of

the array A_,,,n. Two cases must be considered here. In the first case, the

indices are equal, and the elements are of order unity. In the other case, the

indices are unequal, and the elements are small. The case of equal scripts is

given by

1 1-2_,

A2,,,, ~ _ + (- 1) '_ 4------_n +-.. (133)

When the scripts are unequal, we use the exact equation 113 with the asymp-
totic form for the sum and difference of the offsets.

1 1 ) _,.. :k _6_=_6.~ _±_ _,+ .... ±(--- )_,+... (134)

If m and n are nearly equal, that is, the elements are near the principal

diagonal of the array, then this approximation is of order (a)-2 when the

difference is taken and of order (a)-l whcn the sum is taken. In either case,

the next term is of order (_)-3, so that it consistent to use it in both cases

with this understanding. This gives the following result for the difference of
the wavenumbers.

k.n + k.n ~ (_,,, + a,,) (1 T _,_tip_n +'") (135)
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These formulas give an asymptotic form for the inner product of z 2 and the

cosine functions. First, express the exact integral in terms of the wavenum-

bers and offset variables.

(z cos(k,., + k )z)

(136)

The sine and cosine of the offset variable pairs are given by

sin(6,,, 4- 6,) --_ -6(_,, -4- r_) _ +... (137)

2 " \_---_/ +"" (138)

These formulas are used to give the terms in equation 136.

(k,,,, -6 kzn) "_ -6 +"" (139)

sin(6,, + 6,,) 1 (/_p)(kzm -l- kzn) 3 "_ -6 (/_m -6 /_n) 2 _ -_-''" (140)

COS(6,n-66n) 1 ( 2 /3P ]+ "'" (141)(k,,n -6 k,,,) 2 "" (s,,_ -6 _,,)2 1 -6 _-*s,,/

The final asymptotic formula for the inner products of z 2 and the cosine

functions is

(142)

This gives a simple result for the dominant term in the array A2,_,,.

1

A2mn '_ (-1)_-_ (_ m _ _)2 "_-"" (143)
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6.1.4 Asymptotic formula for array D,_n

The above results produce an easy formula for the array D,,m which shows

that the matrix is dominated by the diagonal elements. That is, the off-

diagonal elements in any given row or column are smaller in magnitude than

the diagonal element. The matrix is clearly dominated by the first line in

equation 94 because the terms in the second line vary as _:_-2. In the first line,

terms from the array B2,n, also vary as x_ 2 so that they will be negligible

in comparison to the dominant terms in A2m, which are Of order one near

the diagonal. Thus, a first-order estimate of the array D,,,n for large row and

column indices m, n is

{__ _m-..= , if n -- m;D,m "_ Tmn = 1)-'V-_ 2 if n :_ m.
(144)

(_,_- _)_ ,

Since m and n have the same parity, they must differ by some multiple of

2. The elemcnts of the diagonals adjacent to the principal diagonal then

have magnitude 2/_r 2, or about 1/5. The diagonal elements are all nearly

2/3. This is the average value of the flow speed U(z) for the present case of

Poiseuille flow. The symbol T,_,_ is used because the matrix elements depend

only on position with respect to the principle diagonal. Matrices of this type

are called Toeplitz matrices. The matrix Dm is asymptotic, when both row

and column indices are large, to the Toeplitz matrix T,_,,.

6.2 Ger gorin region and asymptotic eigenvalues

It is known from matrix theory [9] that the eigenvalues of a matrix must

lie within a domain in the complex plane called the Ger_gorin region. This

rcgion is the union of all points which lie within circular subdomains called

Ger§gorin disks. The center of each disk is a point given by a diagonal

elcmcnt of the matrix, and the radius of each disk is the sum of the absolute

values of the off-diagonal elements in the corresponding row or column. This

actually defines two Gcr_gorin regions, but, in the present case of a Toeplitz

matrix, the row and column sums are identical so that the row-disks and

column-disks are identical. TheTocplitz matrix here is particularly simple

and the disk radii are bounded by an infinite series with known sum. This
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bound is given by

R'_ = _ _ < vr----_- _ = Ikxl (145)
d=- n d= 1
d_o

That is, each Cer_gorin disk has the same radius, and this radius is less than

the product of the average flow speed and the axial wavenumber. In the

limiting case of cross-modes, the axial wavenumber approaches zero and the

eigenvalue must approach the disk center, or the value of a diagonal element

of the matrix.

The center of the Ger_gorin disk is a good first guess for the eigenvalue

even when the axial wavenumber is not zero, at least in the case of large

mode index n where the disks are disjoint regions.

w. _ (o,, = kzD,,. - ivk_ _ 2 k - ivt¢_ (146)
3 _

The real part of the approximate eigenvalue (disk center) is the product of

the average flow speed and the axial wavenumber k_ = k¢ cos C, and the

imaginary part of the wavenumber is identical to the complex frequency of
the cross-stream mode.

Figure 9 depicts two Ger§gorin disks as defined by the above equations.

An eigenvalue, called w,, must lie within the shaded domain centered at &..

Since the disk radius is less than to the real part of the diagonal element,

there is no possibility that the real part of the eigenvalue is negative when

the axial wavenumber is positive. More generally, the sign of the real part of

the eigenvalue must match the sign of the axial wavenumber kz.

_[_a,,] is { > 0, if k. > 0; (147)<0, if kz < 0.

The imaginary part of the eigenvalue may be positive or negative if the index

n, is small, but, if
2

v_. > 51kzl (148)

then the imaginary part of the eigenvalue would be required to be negative,

and all eigenvalues meeting this criterion must then lie in the lower half of
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the complexplaneand representstablemodes.Modeswith index n are then

stable if

> 2 V_ 1 (149)

The Ger_gorin disks may intersect as shown in figure 9, but when the mode

index is large, the disks become disjoint and each disk must contain a single

eigenvalue. The condition for disjoint disks is

(4R_ a) (1_01n> k-5_2

The Ger_gorin criterion guarantees only that an eigenvalue lies within the

_..'._.

__::i_ I_'.:_i_i_ I
_i-_"_:===========================================================================================

Figure 9: Ger_gorin disks and eigenvalues for Poiseuille flow. The large

circles are the outer bounds for the disks. Shaded areas are actual disks.

Disk centers are open circular symbols and eigenvalues are filled circular

symbols.

disk, not where it lies, but the computations in the following section will

demonstrate that the eigenvalue approaches the disk center when the index is

large. That is, the "higher" eigenvalues approach the centers of the Ger_gorin

disks.
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6.3 Asymptotic convergence of eigenvalues

A simple approximation to the general eigenvalue problem for Poiseuille flow

isgiven by the asymptotic eigenvalue problem.

The matrices in this equation are within a few percent of the actual matrices

so that this equation contains the principle features of the actual problem.

This similarity is used here to demonstrate the convergence of the eigenvalues

to the asymptotic formula. This is done by comparisons of results from the

asymptotic formula and computations from 32nd order, 48th order, and 64th

order matrices.

....."
.__********************** o,

0.5[,/ , o
| I l i I I I I I

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 10: Even eigenvalues iv for PoiseuiIle flow based on a 32nd order

matrix, k¢ = 1, ¢ = 0, and Re = 104. Solid symbols represent computed

eigenvalues using the Toeplitz matrix [T] and the asymptotic values of the

cross'mode wavenumbers, _: Gray symbols represent the asymptotic for-

mula for the eigenvalues.

Results from the 32nd order matrix solution: are_ shown in figure 10. The

32 complex eigenvalues are distinct, and fall within a unit square in the 4th

quadrant of the complex plane. This is a stable quadrant, according to the

sign convention adopted for this paper. This approximate computation indi-

cates flow stability, whereas it is known that this flow is theoretically unstable

for Reynolds numbers above about 5772. But the purpose of these results

is to show comparisons to the asymptotic formula, not make an absolutely

accurate computation. The eigenvalues predicted by the asymptotic formula

lie on a vertical line in tile complex w-plane which is defined by the average

flow speed, 2/3. Since the length of this line gets large as more eigenvalues

are added, the plot shows/w to make the figure fit more comfortably on the
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page. Note that only a few of the computedeigenvaluesfall near the points
generatedby the asymptotic formlula. This is an indication that the selected
matrix order is not sufficiently large.

0.5

0 _

0

.... ........ ,,.°°°o...°°..,o.

I I ! I II | | n |

0.5 1 1.5 2 2.5 3 3.5 4

Figure 11: Even eigenvalues iw for Poiseuille flow based on a 48th order

matrix, k¢ = 1, ¢ = 0, and Re = 104. Symbols are the same as in figure 10.

The results of computations using a 48th order matrix are shown in figure

11. It is seen that the more-attenuated eigenvalues have moved in the direc-

tion of the asymptotic formula results, while the less-attenuated eigenvalues

are essentially unchanged. As expected, the increase in matrix size appears

to produce a greater number of more-accurate eigenvalues. Eigenvalues from

0.5
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Figure 12: Even eigenvalues iw for Poiseuille flow based on a 64th order

matrix, k¢ = 1, ¢ = 0, and Re = 104. Symbols are the same as in figure 10.

the 64th order matrix are shown in figure 12. It is seen that all but about

6 have approached the asymptotic results. It appears that the computed

spectrum is approaching the asymptotic formula in the domain where the

mode index n is large.
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6.4 Computational results for Poiseuille flow.

The previous results show the qualities of the computation using an m_p-

totic approximation to the matrix eigenvalue problem. This section will show

results of the actual matrix eigenvalue problem.

6.4.1 Numerical conditioning

Thc matrix cigcnva]ue problem with the cross-stream basis is well-condition-

ed in comparison to the Chebyshev/Tau method. This is demonstrated in

figure 13 for thc same physical case as in figure 3. That is, computations

were made for the even modes using an order 32 matrix. As in figure 3,

the computations were made with 32-bit and 64-bit words as a check of

the sensitivity. Most of the 64-bit (black) eigenvalues plot directly onto the

_t

m

lit

Figure 13: Even eigenvalues for Poiseuille flow using the Cross-Stream

method and order 32 matrices. Symbols and physical parameters are the

same as in figure 3.

the 32-bit cigenvalues, dcmonstrating the relative insensitivity to computer

word size. More importantly, a careful count of the symbols shows that all

32 eigenvalues are accounted for within the displayed portion of the complex
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plane. The eigenvalues are distinct, and a sorting operation on the imaginary

part can then select a "least-attenuated" mode without the ambiguity of a

partial eigenvalue list. There is, however, a discernable effect of word size on

a few of the eigenvalues, so that the remainder of the computed results will
be based on 64-bit words.

6.4.2 Asymptotic convergence of eigenvalues

Figure 14 shows the computations for a 64th order matrix. Again, gray

symbols are the centers of the Ger_gorin disks (D,_,_ - irkS) whereas the

computed results are shown as black symbols. The radii of the Ger_gorin

disks will be roughly (2/3)kz so that the higher eigenvalues probably lie in the

4th quadrant. Inspection of figure 14 indicates that the computed eigenvalues

lie even closer to the Ger_gorin centers than in the case of the approximate

matrix eigenvalue problem. Camparing figures 12 and 14 indicates that the

Toeplitz matrix approximation affects primarily the lesser-attenuated modes

which propagate at less than the average flow speed.

.5_...

I'"
, .... * | * . . _ |

0 1 2 3 4

Figure 14: Even eigenvalues for Poiseuille flow using the cross-stream basis

and order 64 matrices. Symbols and physical parameters are the same as in

figure 12.

Figures 15, 16, and 17 show the convergence of the eigenvalues with increasing

matrix size. The matrix order is doubled in each successive figure, starting

from figure 15 where the order is 64, so that figure 16 has matrix order 128

and figure 17 has matrix order 256. figure 15 is the same 64-bit data as in

figure 14, but only distance of the eigenvatue from the Ger_gorin center is

plotted. The abscissa in each figure is the actual mode index, which ranges

up to 510 in figure 17. These computations show clearly that the eigenvalues

converge to the Ger_gorin centers as the index increases. It can be concluded
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from this that the cross-streammethod provides a meansto compute an
indefinite number of eigenvaluesof the Orr-Sommerfeldequation. The fir_st
severalhundred are computableby standard matrix eigenvaluealgorithms,
and any countable number of higher eigenvaluesare approximated by the
easily-computableCer_gorincenters.
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Figure 15: Distance of even eigenvalues from Ger_gorin centers based on

matrix order 64 computations. Physical parameters are the same as in figures

10-12.
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Figure 16: Distance of even eigenvalues from Ger_gorin centers based on

matrix order 128 computations. Symbols and physical parameters are the

same as in figure 15.
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Figure 17: Distance of even eigenvalues from Ger_gorin centers based on

matrix order 256 computations. Symbols and physical parameters are the

same as in figure 15.
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7 Concluding Remarks

The Chebyshev polynomial basis for spectral solutions to the Orr-Sommerfeld

equation leads to a generalized matrix eigenvalue problem. Matrices in this

problem are ill-conditioned so that solutions require large computer words.

The conditioning problem is exacerbated with increasing matrix order so that

the Chebyshev basis can produce only a limited number of meaningful eigen-

values. The Chebyshev basis also produces eigenvalues in all four quadrants

of the complex plane, even for cases believed to be stable, so that a definition

of "least attenuated" mode is ambiguous.

Exact solutions to the Orr-Sommerfeld equation are available for waves

propagating perpendicular to the flow direction. These solutions, called

cross-stream modes here, are a countable set of linearly independent func-

tions which serve as a basis for a Hilbert space. The cross-stream modes

are not orthogonal, but may be subdivided into sets of even and odd func-

tions which are, or course, orthogonal. The "angles" between each of the

even functions are roughly 57 °, and the angles between the odd functions

are about 68 °. The Hilbert space with this basis serves well to estimate the

spectrum of the Orr-Sommerfeld operator and its boundary conditions.

The cross-stream basis leads to a standard matrix eigenvalue problem,

which is simpler to solve than the generalized problem produced by the

Chebyshev basis. Conditioning of this matrix eigenvalue problem is signifi-

cantly better than the Chebyshev problem. The matrix is strictly diagonally

dominant, and all matrix elements, for polynomial flow profiles, are given by

known elementary integrals.

The matrix in the cross-stream eigenvalue problem approaches the sum

of a constant real Toeplitz matrix and a complex diagonal matrix when the

mode index is large. The complex diagonal represents the purely damped

frequencies of the cross-stream modes, that is, the elements of this diagonal

matrix are negative imaginary numbers.

The eigenvalues of the cross-stream matrix lie within well-defined Ger_-

gorin disks. It has been shown that the radius of each disk, is less than about

2k_,/3 for Poiseuille flow, where the fraction 2/3 represents the average speed

of the flow and kx is the given axial wavcnumbcr. As the wavenumber de-

creases to zero, the disks become points and the eigenvalues are exactly the

eigenvalues of the cross-stream modes. The Ger_gorin disks for the cross-

stream matrix show that the real part of all eigenvalues must have the same
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algegraicsign asthe given axial wavenumber.The Ger_gorin disks show also

that only a finite number of modes may be unstable, that is, have eigenval-

ues with a positive imaginary part. This number increases in proportion to

the square root of the Reynolds number. An asymptotic formula has been

developed for the "higher" eigenvalues, which are those with greater atten-

uation: The real part of the asymptotic eigenvalue is the product of the

average flow speed and the axial wavenumber, and the imaginary parts are

the negative-imaginary frequencies of the cross-stream modes.

Computations with the cross-stream method have been made for the well-

studied case of a Poiseuillc flow with Reynolds number 10,000. Matrix orders

up to 256, producing 512 cigenvalues, half even and half odd, show that the

lowcr eigenvalues match the results of the Chebyshev method to eight signif-

icant figures while the higher eigenvalues approach the asymptotic formula

to within three significant figures.

Computations also show only a single eigenvalue with positive imaginary

part. This is the onc corresponding to the critical mode defined by other

investigators. All other eigenvalues have negative imaginary parts. The

cross-stream method permits an unambiguous definition of "least attenuated

mode" through a sorting process on the imaginary part on all eigenvalues

produced by the computation.

The cross-stream method is a well-conditioned and robust computational

approach which can produce an essentially unlimited number of accurate

eigenvalues of the Orr-Sommerfeld equation.
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